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Abstract—Cooperative trajectory mapping is an emerging The main contributions of our paper are as follows: (1)
technique that allows users to create a map by using data we are the first to explore the use of encounter information
collected from each participant’'s mobile phones. Unlike tle to correct the error in cooperative trajectory mapping; (2)

traditional localization problem, where GPS is usually required, listi ¢ del that id
cooperative mapping only requires information about the rdative we use a realistic measurement error mode al considers

distance and direction from the previously reported positon. In  both systematic errors and random errors; (3) we propose an
this paper, we consider the problem of measurement error, with ~ encounter-based error cancellation algorithm that iscétffe

is when the measurement error causes the spatial relationsng  against systematic and random errors; (4) we validate the
users to be wrong, in cooperative trajectory mapping. We pre  eftectiveness of our solutions through extensive simoiati
pose an encounter-based error canceling algorithm to effiently . ts. | ticul f the i t of fal
reduce measurement errors. Extensive simulation experinms exp_e_rlmen S. In parucu a_\r, vye OCUS_ on tne impact ot ialse
are performed to validate our solutions. positive and false negative intersections on the perfooman

Index Terms—Cooperative trajectory mapping, encounter, of the shortest path routing protocol.
measurement noise, mobile phones.
Il. RELATED WORK

. INTRODUCTION One of the earliest applications of cooperative trajectory

Cooperative trajectory mapping is an emerging technigueapping is a mobile social network-based navigation system
that takes advantage of different sensors embedded in-sm#rat was proposed by Constandache et al. [1]. Each user
phones to create maps of users’ trajectories. This type @f ma the mobile social network will periodically report his
is known as atrajectory map GPS is generally not usedtrajectory and his encounter information to the server. The
when building the map due to its high energy overhead [1§erver will use this information to build a set of directicared
[2] and the unavailability of GPS in certain environmentslisplacements that allows friends to locate each otheerLat
such as indoors. Instead, the smartphone’s sensors, léke work by Constandache et al. [8], and Thiagarajan et al. [2],
accelerometer and electronic compass, are used to coll@talso applied a similar idea to other applications. Therma
information like the moving speed, and direction betweetifference of our work is that prior research used a relative
consecutive sampling times [1]. This data is then transwhittsimple noise model and only considered noise cancellatjon b
to a central depository via a 3G or 4G connection, whicla, single user, while we consider a more realistic hoise model
in turn, processes the data from multiple users to createhat has both systematic errors and random noise. We use
trajectory map. This type of map can be used in various apAcounter information among multiple users to reduce error
plications, such as traffic monitoring [3], public transiadion Cooperative trajectory mapping shares similar charasteri
tracking [4], [5], and people localization [2], [6], [7]. tics of the inertial navigation system (INS) used in submeari

An important issue that arises when building a trajectomyavigation [10]. Both techniques are subject to driftingdese
map is dealing with measurement errors from the sensor daif.the sensors’ noise [11]. INS research has two general
In this paper, the measurement error is also known as noiapproaches to address this problem. The first approach is to
A slight measurement error can have a larger impact in thse filtering techniques, such as the Kalman filter [12] and
overall map if left uncorrected. During the process of maparticle filters [13], to limit the effects of the noise. Thecend
building, two disjointed paths may be falsely reported as approach is to apply noise cancellation methods using GPS,
pair of paths intersected with each other, or two joined pathssisted GPS or Wi-Fi [6], [7], [14]. A key difference is that
may be depicted as unrelated. Prior researchers have aso technique is more flexible since we emphasize on the
recognized the importance of measurement errors but haeated locations of each user rather than the physicatitota
only used a simple noise model to address the problem. Finally, Priyantha et al. [15] proposed an anchor-freelloca

In this paper, we propose an encounter-based error cangghtion (AFL) algorithm to resolve the localization protyien
lation algorithm. We let the server periodically check forya sensor networks. The goal of [15] is to determine the pasitio
inconsistencies between users’ reported trajectoriestlagid coordinates of every sensor via local node-to-node distanc
encounters. When an inconsistency is found, the server vallen if the physical location of the nodes is unavailable.
adjust the trajectories accordingly. However, this solution cannot be used to build a trajectoapm



TABLE |
TABLE OF NOTATION

L Reported displacement
k(t) Systematic error in displacement measuremjent
l Real displacement
A Random noise caused by accelerometer
€] Reported moving direction
0 Real moving direction
A0(t) | Electronic compass systematic error parameter
0 Random noise caused by compass
T Cycle time for reporting data to the server
Fig. 1. System model. x¢,y: | The coordinates of a user’s position at time

because the positions are static spot locations. In theepsocB Existing Noise Cancellation Solutions
of creating the trajectory map, we consider the trajectooe 9
moving nodes. The general idea behind error cancellation in prior work [1]
is that each user’s noise can be corrected by some physical
references. If a user passes by the AP (the user is in the
A. System model communication range of the AP), the server can then compute
A cooperative trajectory mapping system I2abasic com- the amount of accumulated errors, which causes the trails
ponents. (1) A server and (2) smartphones. The server t®lleio drift; then, the user’s trails can be repositioned. If ruse
users’ data and uses that information to build the trajgctod encounters useB, who has just been repositioned with
map, and also provides additional services based on the help of an AP, the trail ofi can also be corrected since
constructed map, such as routing. Users report their @ails the position of B is likely to be more accurate. Since [1]
encounters to the server. considered that the amount of noise is proportional to time,
Besides these two basic components, our solution takes @@ can also proportionally use the instantaneous corgctin
vantage of any AP, such as a WiFi AP, that a user encountersctor to adjust the historical trail.
An AP serves as a fixed location reference, and the physicalThis solution is inadequate due to the following reasons.
location of the AP does not need to be known. The purposemifstly, [1] only use false negative encounters in the error
the AP is to quickly establish the spatial relationship agortancellation. By incorporating both false positive andatag
users and to provide an external global reference for noiggcounters, we can improve the error cancellation. Segpndl
cancellation. The AP will periodically broadcast timersfged the direction of the adjustment vector that is used is theesam
beacons, and when a user receives the beacon, he will reagrdll of the data. This is inaccurate since the compass will
the encounters and report to the server. also have a systematic error, which should be accounted for.
We assume that each user's mobile phone is equipped
with an accelerometer, a compass, a wireless receiver, RN Challenges
encounter sensor. The accelerometer and compass are used to
determine a user’s displacement and direction, respégtive N o_rder to correct measurement errors, we need to solve
The wireless receiver is used to receive beacons that HpEee issues: (1) every user's accelerometer and compass ma
transmitted from the AP. The encounter sensor is used §hibit different error parameters. Without knowing théues,
periodically signal and record the presence of other u3éris. We cannot correct the trails since we cannot determine the
can be accomplished by using a Bluetooth module built th@xtent of the_error of each user. Moreover, users’ errorrpara
is into the smartphone [1]. eters may slightly change with time. (2) there are two types
The smartphone will periodically report tireovement list Of encounter errors, and they should be treated differently
andencounter listo the server via a 3G or 4G connection [16]FISe positiveneans that two physically disjointed trajectories
The movement list consists of a series of displacement atf falsely reported as a pair of intersecting trails, wralse
the moving direction from the last recorded position. ThBegativerepresents the situation where two physically joined
encounter list consists of timestamps and user IDs thattdeni@jectories are depicted as unrelated. In the false negedse,
when the encounter occured. We use mathematicako the server can obtain the real distance between the users (or
represent East anti80° to represent West. The position of?€fween a user and an AP) by the encounter sensors and the
a user at time can be computed by: false distance between their reported trails. Howeverhin t
false positive case, the server cannot attain the realntista
< Tt > - ( Ti—1 > +Lx ( cos(Oy) > (1) () since each user may not move at a constant speed, there
Yt Yi—1 sin(6y) is a special case of the false positive error: two reported
All of the symbols used in this section can be found iftrails have a spatial intersection with no physical enceynt
Table. I. Note that the trail of each user is recorded in hnsidering that the users may pass the intersection ateiift
own coordinate system, which is only relative to the initiaime. Hence, we should only consider the trails with definite
(unknown) location of the user [1]. encounters in the false positive case.

I1l. BACKGROUND



TABLE Il

IV. SOLUTION FRAMEWORK TABLE OF NOTATION FOR AUXILIARY FUNCTIONS

A. Overview _ _ Smaz the maximum speed

A key feature of our solution is that when two userg (zy,vs) / («.,y.) | beginning or end location of a displacement
meet, they will independently report their encounter whie t | #, / t. beginning or end time of a displacement
other to the server; although the absolute error of devided length of a displacement
may be large, if the relative errors are small, the coopezat_(*(4.1),y(4,?)) | the location of user at timet

. : . i sensing range
trajectory mapping system can still work well. Our proposed

method consists df steps: (1)each smartphone will apply the

. T . S adjustment direction in false positive is uncertain, we use
Kalman filter [17] to eliminate random noise. Consideringtth ; ; .
: . L ) . two hypotheses to temporarily store the possible adjustmen
the Kalman filter only requires an individual user’s movin

pattern, it is more efficient to apply the Kalman filter at th ositions. Later, we use the encounter information to furth

user side. After filtering, users will report their movingits adjust the hypotheses and to eliminate the wrongs. We use

and encounter information to the server; (2) at the sendk, sierr(_)r_param_eter_s, which were ca_llculated pre_wously, toanak
an initial estimation at the beginning of each time step.othb

the server will first detect any false positive and false tiega .
: .~ of the error parameters of two users are known, the servéer wil
cases by using the reported data. Then, the server willtsligh
use the latest corrected parameter. Then, we make an error

adjust the reported locations, letting the relative erretigen .

. i . D cancellation based on the newly reported data.
users becoming small; during the path correction, it widoal
make some hypothesis about the direction of corrections in V. TECHNICAL DETAILS

false positive conditions. Next, the server will use the new |, order to use AAER. we first need to determine the noise
upcoming encounter to verify and adjust the hypothesis; (R}odel. Then, we will discuss several auxiliary functions.
after correcting each user’s trail, the server will compute

the error parameters of each user. When users report thfeirNoise Model

locations at the next observing time step, the server wil fir The accelerometer and compass each have their own re-
use the parameters to coarsely adjust the position and titien gpective noise model. Table | contains the notations used. W
make a slight correction. Steps (2) and (3) are our proposi@t consider the accelerometer. There are two types of®rro
accessorial anchor-based error reducing algoritf®AER).  the systematic errors and the random errors. The systematic
error is proportional to the moving time or moving distance.
Algorithm 1 The AAER algorithm Moreover, the magnitude of the systematic error may change

1: for Each sampling tim&" do over time. We usé:(t) to represent a systematic error which

2: Find of false positive and false negative by encounters  may slightly change over a long period of time. The reported
3:  Estimate current error parameter by AP encounter displacement[, can be represented ds= [ + k(t) x [ + A.

4.  Use HBMS algorithm to adjust the reported trajectories ' ) .

5 Record the adjusted positions In the same way, the readings from an electronic com@ass,

can be regarded & = 0 + A4(t) + 0.
To illustrate the effect of noise, we temporarily ignore the

random noise. Assume that= k(¢) + 1. The accumulated
error E in a time period can be computed bﬁ: |ﬁ| =

7 iraction s _
: Set up new false positive direction hypothesis L x \/1(7M)721p cos(Af) +1, The (_j”eCt'On Isy): CO_SW) =
P Cos . If one of the noise parameters is relatively

. for Each hypothesisio _ 3 _ W
for i=1: G (recursively reposition, Section V.C.2p large, both of the errors cannot be neglected.
Compute adjustment forc§ '

Move estimation position and compute the adjustment forgg, False Positive and False Negative Error Detection
Record the positions with minimal adjustment force . . . . ,
. Update current error parameter At each reporting time, the server will obtain users’ repdrt

relative positions and their distance from nearby usersrdier
] ] ] to detect the false negative error, the server needs to aempa
B. Accessorial anchor-based error reducing algorithm the encounter readings with trajectories. From there, ¢hees

We use APs to increase the chance of encounters. Algoritterives an error vector (the error's magnitude and diragtio
m 1 shows the procedure of AAER. The details about fine For the false positive error, the actual distance betweensus
of Algorithm 1 can be found in Section V: B. At each timeés unknown since they are not within the bluetooth sensor
step, after collecting all of the trails from users, the servrange of each other. We temporarily use the sensor radius to
will recursively use a hypothesis-based mass-spring (HBME&present the actual distance.
adjustment algorithm to estimate each user’'s real position However, there is a special case when dealing with the
as shown in Algorithm 2. The HBMS algorithm will befalse positive error: the server needs to determine whétveer
discussed in Section V: C. There are two types of adjustmesptatial encounter trails have physically encountered etutr
force used in our algorithm: false positive caused adjustmet some point in time. Because the instantaneous velocigy of
force and false negative caused adjustment force. Since tlser may vary, we should consider all of the possible moving

Algorithm 2 The HBMS algorithm
1: Verify previous direction hypothesis by current encounter

N RWN




conditions of a user. In order to simplify the solution, we / ’

add a new dimension time to the traditional X-Y coordinates. P T
Table Il contains the notations that are used in this section fziw?‘ Adjustvector
Given a specific distance, there are multiple ways in which /Ytifoﬂed,lva‘“’/ ° |
a user can move. For instance, the user can first move at his era | APWUserB
maximum speed to finish the reported displacement and then . . A
stop and wait at the end. Alternatively, the user can alsd wai o e
(a) Adjust direction | (b) Adjust direction II

first at the beginning and then move to complete the distance
just on time. So, there are two trajectory boundary funtiongig 2. The possible adjustments in the false positive CEise server receives
a reported trajectory from user A and detects that the fadsitipe case has

T—T _Y—Y _ t — (te — d/Smaa) @) happened. Since the server cannot get any information aheuteal path

Te — Tp - Ye — Ub d/SWw (the error-free path), the server needs to check both awgmtdirections.

TTT _ YT t—t (3) 12
Te — Tp Ye — Yo d/Smam AT
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position of A is (x(A,t),y(A,tp)), and the end position 4’E’s/ﬁ% . : |
is (x(A,t.),y(A,t.)). Similarity, we haveB’s displacement / v | \
from (x(B,t),y(B,t)) to (z(B,t.),y(B,t.)). Hence, at a
given time ¢, whether a piece of an encounter record will R
be generated or nOt can be determlned by the trUth Value Of (a) Guessed pathwi?houlrighter;coumer (b) Guessed path v_wth right encounter
following formula:R?(a? + ¢2) — (ad — bc)? > 0 where, atnextime step atnext time siep
(z(A,te) —x(A, t)) — (#(B,t.) — x(B,tp)) @ Fig. 3. The verification of a hypothesis.
a =
te — tp
‘ In the false positive case, we cannot obtain the real distanc
= A
b=—axty+z(At)—a(B,h) ®) d;; or the adjustment direction. As shown in Fig. 2, the
(y(Ate) —y(A,tp)) — (y(B,te) — y(B,tp)) real path can be located at either the same side of the error
- t. — 1t (6) path or the other side. Therefore, we need two hypotheses to
d=—cx ty+y(A ts) — y(B,ts) ) respectively store the adjustmerﬂg =+U x (R— d;j).
- b s Ub) — s Ub

The synthesized force of a node in a hypothesis is the sum
C. Hypothesis-based Mass-spring Adjustment (HBMS) of tfgfog@s gotten from all of the nodes’ neighbaFs: =

The HBMS is used to estimate the optimal positions 6f;(F;; +F;;). The total force of a map is given bﬁ:: = F.
users. HBMS first computes the adjustment force in false2) Recursively Repositionchanging one user’s path will
positive and false negative cases, respectively, whichhel also impact the historic path of other users. As a result,
discussed in Section V: C-1. Since the adjustment directitimve estimated position adjustment should be accomplisfed b
of false positive is unknown, the HBMS algorithm will makeseveral smaller adjustments. In each adjustment periodetwve
two hypotheses about the correction’s direction. Then, BBMeach estimated position only mo@, where@ is the server-
will recursively reposition each user's position based be t specified granularity. A smatly means a more accurate map,
hypothesis. The details of a recursive reposition can badouput it also entails higher computing complexity and moreetim
in Section V. C-2. In order to enhance the efficiency ab construct the map. The adjustment process stops when the
HBMS, we first use some error parameter, which has begfal forces of the map stop decreasing.
computed in previous steps, to make a coarse correctiorhwhic 3) Hypothesis Verificationthe position hypothesis can be
will be introduced in Section V: C-4. Then, we estimatgerified by using follow-up encounters with other users. In
the optimal position, recursively. After finding the optimnapagR, the hypothesis can be checked by using encounters
position, HBMS will update the error parameter of usersyith other users whose paths were just adjusted or had
trails. Wrong hypotheses will be eliminated later in HymsI$  encountered an AP. This idea comes from the fact that if all
Verification, which can be found in Section V: C-3. of the users have the same error in their sensor device, the

1) Adjustment Force:assume that there are two Usefs, relative position relationship may still be correct.
and j, who are neighbors. In the false negative case, byg) grror parameter Estimationin order to quickly find the
using reported trails, we can compute the relative distanggiimal location during the HBMS, at the beginning of each
di; between users, and we can also obtain the real physigg{e step’s adjustment, we can use the prior adjustmerttts ra
(ﬁtancedij through RSﬂ readlngs.NThe adjustment’s forcg, coarsely adjust the trails in advance. After each timéopler
F;; can be calculated a5, = U x (d;j —di;), whered is we compute the time interval between the nodes’ (involved
the unit vector from location to j. in the false encounter) previous adjustment times and ourre



Algorithm 3 The friend locator algorithm (server side)

1: Compute spatial intersection based on collected trails

2: for Each pair of intersectiodo

3: if The intersections are directly connected by a user’s trails
then

4 Add an edge between the intersections

5 Set the length of the real trail as the weight of the edge

6: Associate the real trajectory with the edge

7

8

9

"
|

|
-

(a) Normal case trails (b) Normal case routing

B —]

PR

. Apply shortest path algorithm on the routing map
: Find the real trajectories associated with the shortest pat
- Return a list consisted of moving directions and displageme

.

(c) Noise case trails (d) Noise case routing

Algorithm 4 The friend locator algorithm (user side)

1: Send a routing request to the server

2: Receive a list consisted of moving direction and displacgme
3: for Each tuple of the listlo

4: if User cannot find a corresponding palten

times. Then, we calculate the ratio of the adjusted amownts g els(go back 1o last passed intersection; resend routing request

the corresponding time interval and store the ratio. At tsetn . Move as the list guided

time step, we first use the stored parameter to coarselytadjus if All of tuples in list have been taken but the user does noterri

the trails, and then we apply the HBMS. the destinatiorthen
9: Resend routing request

Fig. 4. The effect of measurement error during routing. F{@ and (c)
represent the reported trajectories. Figs. (b) and (cesmmt the correspond-
ing routing graph. The digital stands for the length of a patld the letter
indicates who reported the path.

D. Historical Error Cancellation

Once we know how to adjust the instant position, the
historical positions could also be corrected. We name themissing. The shortest path will become Fig. 4 (d) with its
process of applying error cancellation to the historicabréed  distance changed fron to 30.
positions ashistorical error cancellation
Assume that, at time, the server finds out an adjustment VIl. PERFORMANCEANALYSIS AND EVALUATION
vector. The existing solution [1] is to reposition the histal A. Evaluation metric

trails by using a proportioned adjustment vector, as maetio e yse Matlab to perform our simulation experiments. The
in the background part of our paper. However, this adjustm&Retric we used to evaluate callsaccuracy This is computed

is not true if the compass contains systematic errors. In oy ysing the shortest path algorithm based on the adjusted
solution, the server should first compute the degree of it ery ajectories of users. If there is an error in the routingzhsu

angle. If the time interval between the instantaneous time a,5 retyrning a non-existing path, the user will send theimeut
the previous reposition is not too long, all of the pointstie t request again.

trails should have the same error angle. Therefore, weerotat
the reported trails with the computed error angle and then
shrink or expand the length of each reported displacement.

dij — dis

| ®)

Inaccuracy =

V1. ROUTING APPLICATION: FRIEND LOCATOR Where&;— represents the total length of the real walking path,

Friend locator is a representative application of coopergndd;; is the length of the real shortest path.
tive trajectory mapping: a server periodically collectenss '

trajectories and answers the routing request that helps dheSimulation results

user to find another. The response of the routing consistd/Ve first synthetically generate I& x 15 grid map and set

of the reported trails from several users whose trajedorithe distance between neighborhood aglistance units. Then,

have spatial intersections with the others. The impleniemta we randomly generate the noise-free moving trajectories of

details are presented by Algorithms 3 and 4. every user. The speed of each user varies ftaistance unit
However, the quality of this application is restricted by thper second tal0 distance units per second. We convert the

measurement error: those error paths may cause both faleerdinates of trajectories to sensor readings, whichisbns

positive intersections and false negative intersectiéiig. 4 of displacement and the moving direction. The shape of noisy

shows the effect of the measurement error on the length tedjectories is shown in Fig. 5. The parameters of the noise

the routine result. We havg users, A, B, and C. The arroware also generated randomly. The distribution of the parame

lines represent the paths of users, and the triangles betivee follows normal distribution.

paths are the spatial intersections. Fig. 4 (a) is the fogse-  In order to guarantee that the routing request can always be

example, and Fig. 4 (b) is the corresponding routing graptesponded to, we only use the trails which are connected. The

Suppose that user A wanted to be guided to C. The shortestounter sensors’ sampling times are the same as usdlrs’ tra

path is shown as the bold line. However, assume that thergéporting times. For the consideration of generality, edata

an error undetected in Fig. 4 (c), such that the intersedtiorpoint in our simulation is the average resultiogimulations.
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of the reported trajectories, if they are not corrected rneti
However, since the routing results of MPEC only use physical
encounters, the errors only affect the real walking distanfc
users, who follows the previous user’s trajectory. Fig. 8veh
our simulation results.

VIII. CONCLUSION

In this paper, we consider the problem of accumulative
measurement errors in cooperative trajectory mapping. $&e u
a realistic noise model and propose an encounter-based erro
cancelation algorithm that is effective against measurgme
errors. Our future work will consider techniques to detereni
the presence of a malicious user, who always reports wrong
trails, from the normal user, who has relatively large antsun
of noise. In addition, we plan to build the system on a real

Inaccuracy
Inaccuracy

\
.
.
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Fig. 7. AP density vs. inaccuracy. Fig. 8. Error vs. inaccuracy.
The shortest path algorithm used in our simulation is the
Dijkstra algorithm. Consider that if the relative positioof (1]
users are correct, then the spatial intersections of tragis are
correct. In order to show the importance of the correct apati [2]
encounter, in our method, we use the routing paths, WhicB]
are consisted of spatially jointed trajectories. We corapar
our results with a modified version of [1]. Note that in
their method the routing path is composed by several usert!
trajectories, which are joined only at the physical enceunt 5
places. Moreover, a special pruning algorithm is also uged i
[1]. Since the pruning algorithm only affects the computin 6]
speed rather than accuracy of routing, we do not use the
pruning algorithm. For ease discussion, we name the modifiddl
solution as Modified Proportional Error Cancellation (MBEC
The first tested factor is the user density, as shown i
Fig. 6. We test5 to 11 users in the grid map. Although

the estimated error parameter can be updated when usess

encounter each other, the error of a user at one time may
also be accumulated, which further impacts the quality ef tf10]
friend locator application. [11]
AP density is our second consideration. In the grid map,
we randomly deploys to 20 APs. Intuitively, if the density [12]
of an AP is large enough, the accuracy of the application WH3]
still be high even if the error parameters may change with
time. Moreover, after encountering an AP, the estimatedrerr
parameter can still be used for corrections in a period oé.tim[14]
Fig. 7 is our simulation result when the error parametér(s
for displacement error deviation afic2 for compass. (15]
Our last tested factor is the initial deviation of the errofg
parameters. During simulation, we first set up an initiaberr
in the sensors. Then, we let the noise slightly increase or
decrease along with time. The initial amount of errors mayz

platform for evaluation.
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