
Encounter-based Noise Cancelation For Cooperative
Trajectory Mapping

Wei Chang, Jie Wu, and Chiu C. Tan
Department of Computer and Information Sciences

Temple University, Philadelphia, PA 19122
Email: {wei.chang, jiewu, cctan}@temple.edu

Abstract—Cooperative trajectory mapping is an emerging
technique that allows users to create a map by using data
collected from each participant’s mobile phones. Unlike the
traditional localization problem, where GPS is usually required,
cooperative mapping only requires information about the relative
distance and direction from the previously reported position. In
this paper, we consider the problem of measurement error, which
is when the measurement error causes the spatial relations among
users to be wrong, in cooperative trajectory mapping. We pro-
pose an encounter-based error canceling algorithm to efficiently
reduce measurement errors. Extensive simulation experiments
are performed to validate our solutions.

Index Terms—Cooperative trajectory mapping, encounter,
measurement noise, mobile phones.

I. I NTRODUCTION

Cooperative trajectory mapping is an emerging technique
that takes advantage of different sensors embedded in smart-
phones to create maps of users’ trajectories. This type of map
is known as atrajectory map. GPS is generally not used
when building the map due to its high energy overhead [1],
[2] and the unavailability of GPS in certain environments,
such as indoors. Instead, the smartphone’s sensors, like the
accelerometer and electronic compass, are used to collect
information like the moving speed, and direction between
consecutive sampling times [1]. This data is then transmitted
to a central depository via a 3G or 4G connection, which,
in turn, processes the data from multiple users to create a
trajectory map. This type of map can be used in various ap-
plications, such as traffic monitoring [3], public transportation
tracking [4], [5], and people localization [2], [6], [7].

An important issue that arises when building a trajectory
map is dealing with measurement errors from the sensor data.
In this paper, the measurement error is also known as noise.
A slight measurement error can have a larger impact in the
overall map if left uncorrected. During the process of map
building, two disjointed paths may be falsely reported as a
pair of paths intersected with each other, or two joined paths
may be depicted as unrelated. Prior researchers have also
recognized the importance of measurement errors but have
only used a simple noise model to address the problem.

In this paper, we propose an encounter-based error cancel-
lation algorithm. We let the server periodically check for any
inconsistencies between users’ reported trajectories andtheir
encounters. When an inconsistency is found, the server will
adjust the trajectories accordingly.

The main contributions of our paper are as follows: (1)
we are the first to explore the use of encounter information
to correct the error in cooperative trajectory mapping; (2)
we use a realistic measurement error model that considers
both systematic errors and random errors; (3) we propose an
encounter-based error cancellation algorithm that is effective
against systematic and random errors; (4) we validate the
effectiveness of our solutions through extensive simulation
experiments. In particular, we focus on the impact of false
positive and false negative intersections on the performance
of the shortest path routing protocol.

II. RELATED WORK

One of the earliest applications of cooperative trajectory
mapping is a mobile social network-based navigation system
that was proposed by Constandache et al. [1]. Each user
in the mobile social network will periodically report his
trajectory and his encounter information to the server. The
server will use this information to build a set of directionsand
displacements that allows friends to locate each other. Later
work by Constandache et al. [8], and Thiagarajan et al. [2],
[9] also applied a similar idea to other applications. The main
difference of our work is that prior research used a relatively
simple noise model and only considered noise cancellation by
a single user, while we consider a more realistic noise model
that has both systematic errors and random noise. We use
encounter information among multiple users to reduce errors.

Cooperative trajectory mapping shares similar characteris-
tics of the inertial navigation system (INS) used in submarine
navigation [10]. Both techniques are subject to drifting because
of the sensors’ noise [11]. INS research has two general
approaches to address this problem. The first approach is to
use filtering techniques, such as the Kalman filter [12] and
particle filters [13], to limit the effects of the noise. The second
approach is to apply noise cancellation methods using GPS,
assisted GPS or Wi-Fi [6], [7], [14]. A key difference is that
our technique is more flexible since we emphasize on the
related locations of each user rather than the physical locations.

Finally, Priyantha et al. [15] proposed an anchor-free local-
ization (AFL) algorithm to resolve the localization problem in
sensor networks. The goal of [15] is to determine the position
coordinates of every sensor via local node-to-node distance,
even if the physical location of the nodes is unavailable.
However, this solution cannot be used to build a trajectory map

2

A

B

C

D

encounter

server

Trajectory mappingTrajectory mapping

A D

C

encounter

AP
AP

Fig. 1. System model.

because the positions are static spot locations. In the process
of creating the trajectory map, we consider the trajectories of
moving nodes.

III. B ACKGROUND

A. System model

A cooperative trajectory mapping system has2 basic com-
ponents. (1) A server and (2) smartphones. The server collects
users’ data and uses that information to build the trajectory
map, and also provides additional services based on the
constructed map, such as routing. Users report their trailsand
encounters to the server.

Besides these two basic components, our solution takes ad-
vantage of any AP, such as a WiFi AP, that a user encounters.
An AP serves as a fixed location reference, and the physical
location of the AP does not need to be known. The purpose of
the AP is to quickly establish the spatial relationship among
users and to provide an external global reference for noise
cancellation. The AP will periodically broadcast time-stamped
beacons, and when a user receives the beacon, he will record
the encounters and report to the server.

We assume that each user’s mobile phone is equipped
with an accelerometer, a compass, a wireless receiver, and an
encounter sensor. The accelerometer and compass are used to
determine a user’s displacement and direction, respectively.
The wireless receiver is used to receive beacons that are
transmitted from the AP. The encounter sensor is used to
periodically signal and record the presence of other users.This
can be accomplished by using a Bluetooth module built that
is into the smartphone [1].

The smartphone will periodically report themovement list
andencounter listto the server via a 3G or 4G connection [16].
The movement list consists of a series of displacement and
the moving direction from the last recorded position. The
encounter list consists of timestamps and user IDs that denote
when the encounter occured. We use mathematical0◦ to
represent East and180◦ to represent West. The position of
a user at timet can be computed by:

(
xt
yt

)
=

(
xt−1

yt−1

)
+ L×

(
cos(Θt)
sin(Θt)

)
(1)

All of the symbols used in this section can be found in
Table. I. Note that the trail of each user is recorded in his
own coordinate system, which is only relative to the initial
(unknown) location of the user [1].

TABLE I
TABLE OF NOTATION

L Reported displacement
k(t) Systematic error in displacement measurement
l Real displacement
λ Random noise caused by accelerometer
Θ Reported moving direction
θ Real moving direction
∆θ(t) Electronic compass systematic error parameter
δ Random noise caused by compass
T Cycle time for reporting data to the server
xt, yt The coordinates of a user’s position at timet

B. Existing Noise Cancellation Solutions

The general idea behind error cancellation in prior work [1]
is that each user’s noise can be corrected by some physical
references. If a user passes by the AP (the user is in the
communication range of the AP), the server can then compute
the amount of accumulated errors, which causes the trails
to drift; then, the user’s trails can be repositioned. If user
A encounters userB, who has just been repositioned with
the help of an AP, the trail ofA can also be corrected since
the position ofB is likely to be more accurate. Since [1]
considered that the amount of noise is proportional to time,
we can also proportionally use the instantaneous correcting
vector to adjust the historical trail.

This solution is inadequate due to the following reasons.
Firstly, [1] only use false negative encounters in the error
cancellation. By incorporating both false positive and negative
encounters, we can improve the error cancellation. Secondly,
the direction of the adjustment vector that is used is the same
in all of the data. This is inaccurate since the compass will
also have a systematic error, which should be accounted for.

C. Challenges

In order to correct measurement errors, we need to solve
three issues: (1) every user’s accelerometer and compass may
exhibit different error parameters. Without knowing the values,
we cannot correct the trails since we cannot determine the
extent of the error of each user. Moreover, users’ error param-
eters may slightly change with time. (2) there are two types
of encounter errors, and they should be treated differently.
False positivemeans that two physically disjointed trajectories
are falsely reported as a pair of intersecting trails, whilefalse
negativerepresents the situation where two physically joined
trajectories are depicted as unrelated. In the false negative case,
the server can obtain the real distance between the users (or
between a user and an AP) by the encounter sensors and the
false distance between their reported trails. However, in the
false positive case, the server cannot attain the real distance.
(3) since each user may not move at a constant speed, there
is a special case of the false positive error: two reported
trails have a spatial intersection with no physical encounter,
considering that the users may pass the intersection at different
time. Hence, we should only consider the trails with definite
encounters in the false positive case.

3

IV. SOLUTION FRAMEWORK

A. Overview

A key feature of our solution is that when two users
meet, they will independently report their encounter with the
other to the server; although the absolute error of devices
may be large, if the relative errors are small, the cooperative
trajectory mapping system can still work well. Our proposed
method consists of3 steps: (1)each smartphone will apply the
Kalman filter [17] to eliminate random noise. Considering that
the Kalman filter only requires an individual user’s moving
pattern, it is more efficient to apply the Kalman filter at the
user side. After filtering, users will report their moving trails
and encounter information to the server; (2) at the server side,
the server will first detect any false positive and false negative
cases by using the reported data. Then, the server will slightly
adjust the reported locations, letting the relative error between
users becoming small; during the path correction, it will also
make some hypothesis about the direction of corrections in
false positive conditions. Next, the server will use the new
upcoming encounter to verify and adjust the hypothesis; (3)
after correcting each user’s trail, the server will compute
the error parameters of each user. When users report their
locations at the next observing time step, the server will first
use the parameters to coarsely adjust the position and then will
make a slight correction. Steps (2) and (3) are our proposed
accessorial anchor-based error reducing algorithm(AAER).

Algorithm 1 The AAER algorithm
1: for Each sampling timeT do
2: Find of false positive and false negative by encounters
3: Estimate current error parameter by AP encounter
4: Use HBMS algorithm to adjust the reported trajectories
5: Record the adjusted positions

Algorithm 2 The HBMS algorithm
1: Verify previous direction hypothesis by current encounter
2: Set up new false positive direction hypothesis
3: for Each hypothesisdo
4: for i = 1 : G (recursively reposition, Section V.C.2))do
5: Compute adjustment forceF

G

6: Move estimation position and compute the adjustment force
7: Record the positions with minimal adjustment force
8: Update current error parameter

B. Accessorial anchor-based error reducing algorithm

We use APs to increase the chance of encounters. Algorith-
m 1 shows the procedure of AAER. The details about line2
of Algorithm 1 can be found in Section V: B. At each time
step, after collecting all of the trails from users, the server
will recursively use a hypothesis-based mass-spring (HBMS)
adjustment algorithm to estimate each user’s real position,
as shown in Algorithm 2. The HBMS algorithm will be
discussed in Section V: C. There are two types of adjustment
force used in our algorithm: false positive caused adjustment
force and false negative caused adjustment force. Since the

TABLE II
TABLE OF NOTATION FOR AUXILIARY FUNCTIONS

Smax the maximum speed
(xb, yb) / (xe, ye) beginning or end location of a displacement
tb / te beginning or end time of a displacement
d length of a displacement
(x(A, t), y(A, t)) the location of userA at time t
R sensing range

adjustment direction in false positive is uncertain, we use
two hypotheses to temporarily store the possible adjustment
positions. Later, we use the encounter information to further
adjust the hypotheses and to eliminate the wrongs. We use
error parameters, which were calculated previously, to make
an initial estimation at the beginning of each time step. If both
of the error parameters of two users are known, the server will
use the latest corrected parameter. Then, we make an error
cancellation based on the newly reported data.

V. TECHNICAL DETAILS

In order to use AAER, we first need to determine the noise
model. Then, we will discuss several auxiliary functions.

A. Noise Model

The accelerometer and compass each have their own re-
spective noise model. Table I contains the notations used. We
first consider the accelerometer. There are two types of errors:
the systematic errors and the random errors. The systematic
error is proportional to the moving time or moving distance.
Moreover, the magnitude of the systematic error may change
over time. We usek(t) to represent a systematic error which
may slightly change over a long period of time. The reported
displacement,L, can be represented asL = l + k(t)× l + λ.
In the same way, the readings from an electronic compass,Θ,
can be regarded asΘ = θ +∆θ(t) + δ.

To illustrate the effect of noise, we temporarily ignore the
random noise. Assume thatp = k(t) + 1. The accumulated
error

−→
E in a time period can be computed by:

−→
E : |−→E | =

l ×
√
p2 − 2p cos(∆θ) + 1, The direction isψ: cos(ψ) =

p cos(∆θ)−1√
p2

−2p cos(∆θ)+1
. If one of the noise parameters is relatively

large, both of the errors cannot be neglected.

B. False Positive and False Negative Error Detection

At each reporting time, the server will obtain users’ reported
relative positions and their distance from nearby users. Inorder
to detect the false negative error, the server needs to compare
the encounter readings with trajectories. From there, the server
derives an error vector (the error’s magnitude and direction).
For the false positive error, the actual distance between users
is unknown since they are not within the bluetooth sensor
range of each other. We temporarily use the sensor radius to
represent the actual distance.

However, there is a special case when dealing with the
false positive error: the server needs to determine whethertwo
spatial encounter trails have physically encountered eachother
at some point in time. Because the instantaneous velocity ofa
user may vary, we should consider all of the possible moving

4

conditions of a user. In order to simplify the solution, we
add a new dimension time to the traditional X-Y coordinates.
Table II contains the notations that are used in this section.

Given a specific distance, there are multiple ways in which
a user can move. For instance, the user can first move at his
maximum speed to finish the reported displacement and then
stop and wait at the end. Alternatively, the user can also wait
first at the beginning and then move to complete the distance
just on time. So, there are two trajectory boundary functions:

x− xb
xe − xb

=
y − yb
ye − yb

=
t− (te − d/Smax)

d/Smax

(2)

x− xb
xe − xb

=
y − yb
ye − yb

=
t− tb
d/Smax

(3)

Assuming that we have two users,A andB, both report
one displacement in a time interval fromtb to te. The initial
position of A is (x(A, tb), y(A, tb)), and the end position
is (x(A, te), y(A, te)). Similarity, we haveB’s displacement
from (x(B, tb), y(B, tb)) to (x(B, te), y(B, te)). Hence, at a
given time t, whether a piece of an encounter record will
be generated or not can be determined by the truth value of
following formula:R2(a2 + c2)− (ad− bc)2 ≥ 0 where,

a =
(x(A, te)− x(A, tb))− (x(B, te)− x(B, tb))

te − tb
(4)

b = −a× tb + x(A, tb)− x(B, tb) (5)

c =
(y(A, te)− y(A, tb))− (y(B, te)− y(B, tb))

te − tb
(6)

d = −c× tb + y(A, tb)− y(B, tb) (7)

C. Hypothesis-based Mass-spring Adjustment (HBMS)

The HBMS is used to estimate the optimal positions of
users. HBMS first computes the adjustment force in false
positive and false negative cases, respectively, which will be
discussed in Section V: C-1. Since the adjustment direction
of false positive is unknown, the HBMS algorithm will make
two hypotheses about the correction’s direction. Then, HBMS
will recursively reposition each user’s position based on the
hypothesis. The details of a recursive reposition can be found
in Section V: C-2. In order to enhance the efficiency of
HBMS, we first use some error parameter, which has been
computed in previous steps, to make a coarse correction which
will be introduced in Section V: C-4. Then, we estimate
the optimal position, recursively. After finding the optimal
position, HBMS will update the error parameter of users’
trails. Wrong hypotheses will be eliminated later in Hypothesis
Verification, which can be found in Section V: C-3.

1) Adjustment Force:assume that there are two users,i
and j, who are neighbors. In the false negative case, by
using reported trails, we can compute the relative distance
d̃ij between users, and we can also obtain the real physical
distancedij through RSSI readings. The adjustment’s force−→
F−

ij can be calculated as:
−→
F−

ij = −→u × (d̃ij − dij), where−→u is
the unit vector from locationi to j.

Real path

(b) Adjust direction II(a) Adjust direction I

Adjusted path

Reported path

Adjust vector
User A

AP/User B

Real p
ath

Reported path

AP/User B

Adjusted path Adjust vector

User A

Fig. 2. The possible adjustments in the false positive case.The server receives
a reported trajectory from user A and detects that the false positive case has
happened. Since the server cannot get any information aboutthe real path
(the error-free path), the server needs to check both adjustment directions.

Real path

AP

(b) Guessed path with right encounter

at next time step

Real path

Reported path

AP

(a) Guessed path without right encounter

at next time step

Guess path
1

Guess path 2

Reported path

Adjust vector

Adjust vector

Adj
us

te
d

pa
th

Adj
us

te
d

pa
th

d1d1

d2

d3

Fig. 3. The verification of a hypothesis.

In the false positive case, we cannot obtain the real distance
dij or the adjustment direction. As shown in Fig. 2, the
real path can be located at either the same side of the error
path or the other side. Therefore, we need two hypotheses to

respectively store the adjustments
−→
F+
ij = ±−→u × (R − dij).

The synthesized force of a node in a hypothesis is the sum
of the forces gotten from all of the nodes’ neighbors:

−→
Fi =

Σj(
−→
F+
ij +

−→
F−

ij). The total force of a map is given by:
−→
F = Σi

−→
Fi.

2) Recursively Reposition:changing one user’s path will
also impact the historic path of other users. As a result,
the estimated position adjustment should be accomplished by
several smaller adjustments. In each adjustment period, welet
each estimated position only move

−→

Fi

G
, whereG is the server-

specified granularity. A smallG means a more accurate map,
but it also entails higher computing complexity and more time
to construct the map. The adjustment process stops when the
total forces of the map stop decreasing.

3) Hypothesis Verification:the position hypothesis can be
verified by using follow-up encounters with other users. In
AAER, the hypothesis can be checked by using encounters
with other users whose paths were just adjusted or had
encountered an AP. This idea comes from the fact that if all
of the users have the same error in their sensor device, the
relative position relationship may still be correct.

4) Error Parameter Estimation:in order to quickly find the
optimal location during the HBMS, at the beginning of each
time step’s adjustment, we can use the prior adjustment’s ratio
to coarsely adjust the trails in advance. After each time period,
we compute the time interval between the nodes’ (involved
in the false encounter) previous adjustment times and current

5

3A

2 16/B

3

2

1A

B

C 1

B

C
6/A 5/C

3A

2 16/B

3

2

A

B

C

B

C
5/C

9/A

8/C

3/A

3/B

3/B

(a) Normal case trails

(c) Noise case trails

(b) Normal case routing

(d) Noise case routing

Fig. 4. The effect of measurement error during routing. Figs. (a) and (c)
represent the reported trajectories. Figs. (b) and (c) represent the correspond-
ing routing graph. The digital stands for the length of a pathand the letter
indicates who reported the path.

times. Then, we calculate the ratio of the adjusted amounts to
the corresponding time interval and store the ratio. At the next
time step, we first use the stored parameter to coarsely adjust
the trails, and then we apply the HBMS.

D. Historical Error Cancellation

Once we know how to adjust the instant position, the
historical positions could also be corrected. We name the
process of applying error cancellation to the historical reported
positions ashistorical error cancellation.

Assume that, at timet, the server finds out an adjustment
vector. The existing solution [1] is to reposition the historical
trails by using a proportioned adjustment vector, as mentioned
in the background part of our paper. However, this adjustment
is not true if the compass contains systematic errors. In our
solution, the server should first compute the degree of the error
angle. If the time interval between the instantaneous time and
the previous reposition is not too long, all of the points in the
trails should have the same error angle. Therefore, we rotate
the reported trails with the computed error angle and then
shrink or expand the length of each reported displacement.

VI. ROUTING APPLICATION: FRIEND LOCATOR

Friend locator is a representative application of coopera-
tive trajectory mapping: a server periodically collects users’
trajectories and answers the routing request that helps one
user to find another. The response of the routing consists
of the reported trails from several users whose trajectories
have spatial intersections with the others. The implementation
details are presented by Algorithms 3 and 4.

However, the quality of this application is restricted by the
measurement error: those error paths may cause both false
positive intersections and false negative intersections.Fig. 4
shows the effect of the measurement error on the length of
the routine result. We have3 users, A, B, and C. The arrow
lines represent the paths of users, and the triangles between the
paths are the spatial intersections. Fig. 4 (a) is the noise-free
example, and Fig. 4 (b) is the corresponding routing graph.
Suppose that user A wanted to be guided to C. The shortest
path is shown as the bold line. However, assume that there is
an error undetected in Fig. 4 (c), such that the intersection1

Algorithm 3 The friend locator algorithm (server side)
1: Compute spatial intersection based on collected trails
2: for Each pair of intersectiondo
3: if The intersections are directly connected by a user’s trails

then
4: Add an edge between the intersections
5: Set the length of the real trail as the weight of the edge
6: Associate the real trajectory with the edge
7: Apply shortest path algorithm on the routing map
8: Find the real trajectories associated with the shortest path
9: Return a list consisted of moving directions and displacements

Algorithm 4 The friend locator algorithm (user side)
1: Send a routing request to the server
2: Receive a list consisted of moving direction and displacements
3: for Each tuple of the listdo
4: if User cannot find a corresponding paththen
5: Go back to last passed intersection; resend routing request
6: else
7: Move as the list guided
8: if All of tuples in list have been taken but the user does not arrive

the destinationthen
9: Resend routing request

is missing. The shortest path will become Fig. 4 (d) with its
distance changed from19 to 30.

VII. PERFORMANCEANALYSIS AND EVALUATION

A. Evaluation metric

We use Matlab to perform our simulation experiments. The
metric we used to evaluate callsInaccuracy. This is computed
by using the shortest path algorithm based on the adjusted
trajectories of users. If there is an error in the routing, such
as returning a non-existing path, the user will send the routine
request again.

Inaccuracy =

∣∣∣∣∣
d̃ij − dij
dij

∣∣∣∣∣ , (8)

whered̃ij represents the total length of the real walking path,
anddij is the length of the real shortest path.

B. Simulation results

We first synthetically generate a15× 15 grid map and set
the distance between neighborhood as10 distance units. Then,
we randomly generate the noise-free moving trajectories of
every user. The speed of each user varies from1 distance unit
per second to10 distance units per second. We convert the
coordinates of trajectories to sensor readings, which consist
of displacement and the moving direction. The shape of noisy
trajectories is shown in Fig. 5. The parameters of the noise
are also generated randomly. The distribution of the parameter
follows normal distribution.

In order to guarantee that the routing request can always be
responded to, we only use the trails which are connected. The
encounter sensors’ sampling times are the same as users’ trail
reporting times. For the consideration of generality, eachdata
point in our simulation is the average result of5 simulations.

6

−20 0 20 40 60 80 100 120 140 160
−20

0

20

40

60

80

100

120

140

160

X direction

Y
 d

ir
e
c
ti
o
n

Fig. 5. Data illustration.

6 9 12
0

2

4

In
a

c
c

u
ra

c
y

Number of users

 Our AP based solution

MPEC

Fig. 6. User density vs. inaccuracy.

7 14 21
0

2

4

In
a
c
c
u

r
a
c
y

Number of APs

 Our AP based solution

 MPEC

Fig. 7. AP density vs. inaccuracy.

0.03 0.06 0.09
0

2

4

 Our AP based solution

MPEC

In
a

c
c
u

r
a

c
y

Deviation of noise parameter

Fig. 8. Error vs. inaccuracy.

The shortest path algorithm used in our simulation is the
Dijkstra algorithm. Consider that if the relative positions of
users are correct, then the spatial intersections of their trails are
correct. In order to show the importance of the correct spatial
encounter, in our method, we use the routing paths, which
are consisted of spatially jointed trajectories. We compare
our results with a modified version of [1]. Note that in
their method the routing path is composed by several users’
trajectories, which are joined only at the physical encounter
places. Moreover, a special pruning algorithm is also used in
[1]. Since the pruning algorithm only affects the computing
speed rather than accuracy of routing, we do not use the
pruning algorithm. For ease discussion, we name the modified
solution as Modified Proportional Error Cancellation (MPEC).

The first tested factor is the user density, as shown in
Fig. 6. We test5 to 11 users in the grid map. Although
the estimated error parameter can be updated when users
encounter each other, the error of a user at one time may
also be accumulated, which further impacts the quality of the
friend locator application.

AP density is our second consideration. In the grid map,
we randomly deploy5 to 20 APs. Intuitively, if the density
of an AP is large enough, the accuracy of the application will
still be high even if the error parameters may change with
time. Moreover, after encountering an AP, the estimated error
parameter can still be used for corrections in a period of time.
Fig. 7 is our simulation result when the error parameter is0.08
for displacement error deviation and0.2 for compass.

Our last tested factor is the initial deviation of the error
parameters. During simulation, we first set up an initial error
in the sensors. Then, we let the noise slightly increase or
decrease along with time. The initial amount of errors may
have some significant impact on the spatial encounter-based
routing results, especially the structure of spatial intersections

of the reported trajectories, if they are not corrected in time.
However, since the routing results of MPEC only use physical
encounters, the errors only affect the real walking distance of
users, who follows the previous user’s trajectory. Fig. 8 shows
our simulation results.

VIII. C ONCLUSION

In this paper, we consider the problem of accumulative
measurement errors in cooperative trajectory mapping. We use
a realistic noise model and propose an encounter-based error
cancelation algorithm that is effective against measurement
errors. Our future work will consider techniques to determine
the presence of a malicious user, who always reports wrong
trails, from the normal user, who has relatively large amounts
of noise. In addition, we plan to build the system on a real
platform for evaluation.

ACKNOWLEDGMENT

This research was supported in part by NSF grants ECCS
1128209, CNS 1065444, CCF 1028167, CNS 0948184, and
CCF 0830289.

REFERENCES

[1] I. Constandache, X. Bao, M. Azizyan, and R. Choudhury, “Did you
see Bob?: human localization using mobile phones,” inACM MobiCom,
2010.

[2] I. Constandache, R. Choudhury, and I. Rhee, “Towards mobile phone
localization without war-driving,” inIEEE INFOCOM, 2010.

[3] P. Mohan, V. Padmanabhan, and R. Ramjee, “Nericell: richmonitoring of
road and traffic conditions using mobile smartphones,” inACM SenSys,
2008.

[4] A. Repenning and A. Ioannidou, “Mobility agents: guiding and tracking
public transportation users,” inACM AVI, 2006.

[5] J. Froehlich, T. Dillahunt, P. Klasnja, J. Mankoff, S. Consolvo, B. Harri-
son, and J. Landay, “UbiGreen: investigating a mobile tool for tracking
and supporting green transportation habits,” inACM CHI, 2009.

[6] P. Bahl and V. Padmanabhan, “RADAR: An in-building RF-based user
location and tracking system,” inIEEE INFOCOM, 2000.

[7] Y. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm, “Accuracy charac-
terization for metropolitan-scale Wi-Fi localization,” in ACM MobiSys,
2005.

[8] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden,H. Balakrish-
nan, S. Toledo, and J. Eriksson, “VTrack: accurate, energy-aware road
traffic delay estimation using mobile phones,” inACM SenSys, 2009.

[9] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
transit tracking using smart-phones,” inACM SenSys, 2010.

[10] J. Farrell and M. Barth,The global positioning system and inertial
navigation. McGraw-Hill Professional, 1999.

[11] P. Gilliéron, D. Buchel, I. Spassov, and B. Merminod, “Indoor navigation
performance analysis,” inENC GNSS, 2004.

[12] G. Welch and G. Bishop, “An introduction to the Kalman filter,”
University of North Carolina at Chapel Hill, Chapel Hill, NC, 1995.

[13] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,J. Jansson,
R. Karlsson, and P. Nordlund, “Particle filters for positioning, navigation,
and tracking,”IEEE Transactions on Signal Processing, 2002.

[14] M. Youssef, A. Youssef, C. Rieger, U. Shankar, and A. Agrawala,
“Pinpoint: An asynchronous time-based location determination system,”
in ACM MobiSys, 2006.

[15] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Anchor-free
distributed localization in sensor networks,” inACM SenSys, 2003.

[16] F. Fitzek, A. Kopsel, A. Wolisz, M. Krishnam, and M. Reisslein,
“Providing application-level QoS in 3G/4G wireless systems: a com-
prehensive framework based on multirate CDMA,”IEEE Transactions
on Wireless Communications, 2002.

[17] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Chapel
Hill, NC, USA, Tech. Rep., 1995.

